
 Page 1/10

Synoptic: a DSML for On-Board Real-Time Software Design

A. Cortier1, J.P. Bodeveix1, M. Filali1, G. Garcia2, E. Morand 3, M. Pantel1, A. Rugina4,
M. Strecker1, J.P. Talpin5

1: IRIT-ACADIE, Université Paul Sabatier, 118 Route de Narbonne 31062 Toulouse, France
2: Thales Alenia Space, 100 Boulevard Midi, 06150 Cannes, France

3: CNES – DCT/SB/LV, 18 Avenue Edouard Belin 31401 Toulouse, France
4: EADS Astrium, 31 rue des Cosmonautes Z.I Palays 31402 Toulouse, France

5: IRISA-ESPRESSO, Campus de Beaulieu 35042 Rennes, France

Abstract: The ANR exploratory project SPaCIFY
[19,20] designs and implements a domain-specific
environment, for real-time embedded space
application and control software. Synoptic is an
Eclipse-based modeling environment which aims to
support all aspects of aerospace software design. In
this context, a Domain Specific Modeling Language
(DSML) called Synoptic has been defined in
collaboration with the industrial end users of the
project. Relying on the standard modeling languages
used in the domain such as Simulink/Stateflow and
AADL, Synoptic DSML covers the design of
application and control modules using synchronous
programs, dataflow diagrams, mode automata, and
also the partitioning, timing and mapping of these
module onto satellite architectures. This paper
describes the main features of Synoptic DSML. A
case study illustrates the concepts introduced in this
paper.

Keywords: IDM, DSML, Embedded Systems,
synchronous semantics

1. Introduction

A satellite is an unmanned spacecraft. The system
architecture is usually specialized according to the
satellite mission. There are two main subsystems:
the payload is an application equipment such as
specific scientific instrumentation for instance; the
platform consists of mechanical structure, sensors
and actuators used by the payload and devices for
communication with ground stations. The ANR
SPaCIFY exploratory project focuses on the flight
software embedded in the satellite to manage its
platform, also called on-board software. The flight
software is a real-time software that provides
services that are common to whatever mission-
specific payload the spacecraft is assigned. Typical
services include reaching and following the desired
attitude and orbit, managing thermal regulation
systems, power sources, monitoring system status,
managing on-board network (MIL-STD-1553, OBDH,
SpaceWire), and communicating with ground
stations.
Even after the satellite has been launched, flight
software must be adapted. Satellites are subject to
high energy particles that may damage hardware

components. Such damages cannot be fixed except
by installing software workarounds. Bug fixes and
software updates should be propagated to flying
satellites. In addition, mission extensions may
require functional enhancements.
As flight software is critical to the success of the
mission, space industries and agencies have worked
on engineering processes in order to help increase
reliability. For instance, the European Space Agency
has published standards (ECSS-E-40) on software
engineering and (ECSS-Q-ST-80) on product
assurance. These standards do not prescribe a
specific process. They rather formalize documents,
list requirements of the process and assign
responsibilities to involved partners. Regarding
updates, standards stipulate for instance that the
type, scope and criticality must be documented; that
updates must be validated; and so on. Industries are
free to come up with their own conforming
processes. The SPaCIFY project aims to define such
a process and supporting tools based on Model-
Driven Engineering (MDE), synchronous languages
and the Globally Asynchronous Locally Synchronous
System (GALS) paradigm.

2. Models used

Two main kinds of models are commonly used in
order to design the platform software: on the one
hand, the description of the platform itself, its
hardware and software architecture, CPU, memory,
storage, communication buses, sensors, actuators,
hardware communication facilities, operating system,
tasks, software communication facilities, and on the
other hand, the command and control algorithms
involved in the management of the platform. All
these models have common features. First, the
notion of mode is central to represent the various
states or configurations of both hardware and
software (for example: init, reset, on, low power,
failure, safe). The modes and their management are
usually expressed using finite automata. Second, the
functional blocks, data exchange buses and signals
are used to represent both the hardware and
software architectures, and the command and
control software.
However, the current models only provide a partial
account of the constraints that the final system must

 Page 2/10

satisfy. The designers usually encode these hidden
constraints using the available constructs in the
modeling languages, even if this was not the initial
purpose of the construct used. This is usually the
case for hard real-time constraints. The designers
will rely on explicit management of the control-flow in
dataflow models in order to manage the concurrency
between the activities. But, the real timing
constraints are not explicitly given in the model, they
are handled by the designers who sequence the
activities, but there is no real specification of the
intended result. Thus it requires a very difficult
verification phase that can only occur on the final
target. This is the current main difficulty: using model
constructs for other purposes than their intended
ones without any formal, model-level traceability to
the initial constraints.

Currently, industrial main actors are relying on the
Matlab toolboxes, Simulink and Stateflow from the
MathWorks [1] for expressing the command and
control algorithms for the various sub-systems of the
platform. These models are built by command and
control engineers taking into account several kinds
of constraints:

 the hardware which is usually known very early
(in particular if it handles timing and
synchronization constraints related to sensors
and actuators, which must be activated and will
produce results in very precise timing patterns);

 the system mode management that impacts the
execution of the various sub-systems;

 the specification of the intended sub-system.

The Simulink and Stateflow toolboxes allow a very
wide range of modeling methods, from continuous
partial differential equations to graphical functional
specifications. Each industrial actor has a well
defined process which defines the restricted subset
of the modeling language that will be used at each
phase of the development cycle. In the ITEA
GeneAuto project [2], a subset of these toolboxes
was defined that fits the needs for the modeling of
space applications from early design to automated
target code generation.
The industrial partners of SPaCIFY took also part in
GeneAuto. This subset aimed at providing a solid
semantic background that would ease the
understanding and the formal verification of models.
This subset was chosen as an entry point for the
design of the Synoptic language. One key point is
the use of control-flow signals and events (called in
Simulink function call events) in order to manage
explicitly the sequencing of the blocks in dataflow
models. This is an important point which is
significantly different on the semantics side from the
classical dataflow modeling languages such as
SCADE [3] or RT-Builder [4] which do not provide a
specific modeling construct for this purpose, but

allow to encode it through empty data signals that
are added between each block in the intended
sequencing path. The key point is that the intended
hard real-time constraints are not explicit.
Thus it is mandatory to handle the control-flow
construct exactly in its usual semantics not using an
approximate encoding which only works most of the
time but is not proven to work in all cases. Several
studies have been conducted by industrial main
actors regarding the modeling of hardware and
software architecture. HOOD [5] and CCM [6] have
been used for many real projects; AADL [7, 8],
SysML [9] and UML/MARTE [10] have been
evaluated using already existing projects that could
be modeled and the results compared with the real
systems. Once again, these languages provide a
very wide range of modeling constructs that must be
reduced or organized in order to be manageable. In
the European ASSERT project [11], two tracks were
experimented related to these languages, one
mainly synchronous based on the LUSTRE [12] and
SIGNAL [13] languages, the other mainly
asynchronous based on the RAVENSCAR Ada [14]
profile. The industrial partners from SPaCIFY were
also part of ASSERT. Thus, the results of these
experiments were also used as entry points for the
design of the Synoptic language.
In the current software development process,
command and control models are formal
specifications for the software development. These
specifications have been validated by command and
control engineers by using model simulators. The
hardware architecture is currently defined in a semi-
formal manner through structured documents. In the
near future, models in AADL, or in a subset of
SysML/UML/MARTE similar to AADL, will be used to
give a formal specification of the architecture.
Then, software engineers either develop the
software and verify its conformance to the
specification, or use automated code generators; the
software is then split in parts that are mapped to
threads from the RTOS. They are then scheduled
according to the real-time constraints. The know-how
of engineers lies in finding the best splitting, mapping
and scheduling in order to minimize the resources
used. One of the purposes of introducing Model
Driven Engineering is to be able to automate partly
these manual transformations and the verification
that their result satisfies the specification. The
Synoptic language should thus allow importing
command and controlling models expressed in
Simulink/Stateflow, and hardware architecture
models expressed in AADL. The associated toolset
should assist in the reorganization of the model, and
allow to express the mapping and scheduling.

3. Synoptic : DSML for aerospace systems

3.1 GALS systems

 Page 3/10

Figure 1: GALS systems.

The satellite management software is usually divided
in parts that are quite autonomous one from the
other, even if they share the same platform and
resources. Inside each of these parts, the subparts
are most of the time strongly linked and must
cooperate in a synchronous manner. These parts
usually exchange information but with less time
critical constraints, thus relying on asynchronous
exchanges. This kind of system is usually called
Globally Asynchronous, Locally Synchronous
(GALS).

The SPaCIFY approach involves the design and
development of such systems using a GALS
architecture dedicated to space. Fig. 1 shows the
high level architecture used by the consortium. The
flight software consists of a set of subsystems, called
synchronous islands, which encapsulates the main
functionalities of the system as the Attitude and Orbit
Control System (AOCS). These blocks can
communicate with each other, with other equipment
or with the ground station via the middleware
services. The middleware is built on a real-time
kernel that provides basic services such as tasks
management and synchronization primitives. The
middleware provides high level services such as a
PUS interpreter (Packet Utilization Standard) [18]
responsible for routing telecommands to other
services.

The main abstraction service provided by the
middleware is the concept of external variables.
External variables are used as interfaces between
the application tasks of the flight software (i.e.
synchronous islands) and the services of the
middleware. The external variables are instantiated
in the source code as memory cells which are
associated with specific treatments. The treatments
performed are defined by the configuration of the
middleware, in particular through contracts specified
in the design. In such an architecture, the

middleware provides a synchronous abstraction of
the real-world to the application tasks of the system.
He is responsible for ensuring the synchronization of
read and write access to external variables in order
to guarantee the determinism of synchronous
islands.

3.2 Synoptic overview

Synoptic is a Domain Specific Modeling Language
(DSML) designed to cover a large part of embedded
flight-software design. As such, Synoptic consists of
heterogeneous modeling and programming
principles defined in collaboration with the industrial
partners and end users of the SPaCIFY project.
Used as the central modeling language of the
SPaCIFY model driven engineering process,
Synoptic allows describing different layers of
abstraction: at the highest level, the software
architecture models the functional decomposition of
the flight software. This is mapped to a dynamic
architecture which defines the thread structure of the
software. It consists of a set of threads, where each
thread is characterized by properties such as its
frequency, priority and activation pattern (periodic,
sporadic).

Figure 2: Synoptic Global view.

At the lowest level, the hardware architecture
permits to define devices (processors, sensors,
actuators, busses) and their properties. Synoptic
permits to describe three types of mappings between
these layers (Fig. 2):

 mappings which define a correspondence
between the software and the dynamic
architecture, by specifying which blocks are
executed by which threads;

 mappings which describe the correspondences
between the dynamic and hardware architecture,

 Page 4/10

by specifying which threads are executed by
which processor:

 and mappings which describe a correspondence
between the software and hardware
architecture, by specifying which data is
transported by which bus for instance.

Our aim is to synthesize as much of these mappings
as possible, for example by appealing to internal or
external schedulers. However, to allow for human
intervention, it is possible to give a fine-grained
mapping, thus overriding or bypassing machine-
generated schedules.

Anyway, consistency of the resulting dynamic
architecture is verified by the SPaCIFY tool suite,
based on the properties of the software and dynamic
model. At each step of the development process, it is
also useful to model different abstraction levels of
the system under design inside a same layer

(functional, dynamic or hardware architecture).
Synoptic covers this capability by providing an
incremental design framework and refinement
features.

To summarize, Synoptic deals with dataflow
diagrams, mode automata, blocks, components,
dynamic and hardware architecture, mapping and
timing. In this section we focus on the functional part
of the Synoptic language which permits to model
software architecture. This sub-language is well
adapted to model synchronous islands and to
specify interaction points between these islands and
the middleware platform using the concept of
external variables. Synchronous islands and
middleware form a Globally Asynchronous and
Locally Synchronous (GALS) system.

Figure 3: Case study : satellite positioning software.

 Page 5/10

Software architecture. The development of the
Synoptic software architecture language has been
tightly coordinated with the definition of the
GeneAuto language [16]. Synoptic uses essentially
two types of modules, called blocks in Synoptic,
which can be mutually nested: dataflow diagrams
and mode automata. Nesting favors a hierarchical
design and allows to view the description at different
levels of details. By embedding blocks in the states
of state machines, one can elegantly model
operational modes: each state represents a mode,
and transitions correspond to mode changes. In
each mode, the system may be composed of other
sub-blocks or have different connection patterns
among components.

Apart from structural and behavioral aspects, the
Synoptic software architecture language allows to
define temporal properties of blocks. For instance, a
block can be parameterized with a frequency and a
worst case execution time which are taken into
account in the mapping onto the dynamic
architecture.

3.3 Synchronous formal semantics

Synoptic has a formal semantics, defined in terms of
the synchronous language SIGNAL [21]. On the one
hand, this allows for neat integration of verification
environments for ascertaining properties of the
system under development. On the other hand, a
formal semantics makes it possible to encode the
meta-model in a proof assistant. In this sense,
Synoptic will profit from the formal correctness proof
and subsequent certification of a code generator that
is under way in the GeneAuto project.

Synoptic is equipped with an assertion language that
allows to state desired properties of the model under
development. We are mainly interested in properties
that permit to express, for example, coherence of the
modes such as : ‘if component X is in mode m1, then
component Y is in mode m2 or can eventually move
into mode m2’.
Specific transformations extract these properties and
pass them to the verification tools Altarica [16].

3.4 Synoptic architecture models

One typical case study under investigation in the
project is generic satellite positioning software, Fig. 3
(a). It is responsible for automatically moving the
satellite into a correct position before starting
interaction with the ground.

Block diagrams. A Synoptic model is a graphical
block-diagram. A Synoptic block-diagram is a
hierarchy of nested blocks. As such, you can
navigate through different levels of abstraction and

see increasing levels of model details. A block is a
functional unit that communicates with other blocks
through its interface.

Block Interface. A block interface consists of
communication ports. A port can be either an event
port or a data port and is characterized by its
direction (in or out). Data ports can be typed using
simple data types. However, typing data ports is
optional in the early stages of design to give the
designer the flexibility to describe abstract models.
As shown in Fig.3, which represents a part of the
Synoptic meta-model, it is possible to encapsulate a
set of ports within a single entity called group of
ports (PortGroup in Fig. 4).

Figure 4: Synoptic Meta-model : Interface.

A group of ports is used to group a set of ports which
are conceptually linked. As specified by the
synchronized property of the PortGroupDecl meta-
model class, it is possible to specify a
synchronization constraint on ports constituting the
group. A block interface can be implemented by
different types of blocks: dataflows, automata or
externals, Fig. 5.

Figure 5: Synoptic Meta-model : Model Diagram.

Dataflows. A dataflow block models a dataflow
diagram. It embodies sub-blocks and specifies data
or event flows between them. A flow is a directed
connection between ports of sub-blocks. A sub-block

 Page 6/10

is either an instance of dataflow, automaton or
external block, or an instance of block interface (see

ModelInstance class in Fig. 4). In the latter case,

the model is abstract: the designer must implement
all the block interfaces used to type sub-blocks in
order to obtain a concrete model. As such, Synoptic
environment design promotes a top-down approach.

Automata. An automaton block models state
machines. A Synoptic automaton consists of states
and transitions. As for dataflow, a state can be
represented by an instance of dataflow, automaton
or block interface. Dataflow diagrams and automata
can be hierarchically nested; this allows for a
compact modeling of operational modes.

Apart from the ongoing actions of automata (block
embedded in state), it is possible to specify entry
and exit actions in an imperative style. Transitions
between states are guarded and equipped with
actions. There are two types of transitions in
Synoptic: strong and weak transitions.
Strong transitions are used to compute the current
state of the automaton (before entering the state),
whereas weak transitions are used to compute the
state for the next instant. More precisely, the guards
of weak transitions are evaluated to estimate the
state for the next instant, and the guards of strong
transitions whose source is the state estimated at
the previous instant, are evaluated to determine the
current state.

Externals. A common practice in software industry
is the re-use of external source code: designers
must be able to introduce blocks representing
existing source code into the model. Moreover, for
modeling flight software functional units, it is
necessary to use primitive operations such as
addition, cosine, division... Synoptic provides the
concept of external block to model primitive blocks
and external source code. Primitive blocks are
encapsulated in a Synoptic library. The Synoptic tool
suit recognizes these primitive operations during
code generation. For embedding an external source
code, the procedure is quite different. The designer
must build his own external block by defining its
interface, by giving the source code path which will
be used at code generation time, and by specifying
pre/post conditions and the Worst Case Execution
Time of the functional unit.

Example. Fig.6 shows the graphical decomposition
of the nominal mode of the Attitude and Orbit Control
System (AOCS/NM) depicted in (Fig. 3 (c)). The
header of the block tells us that NM is an instance of
the NM_dtf dataflow block. In nominal mode, AOCS
can either use its sun pointing sensors (SUP) to
define its position or, during eclipse, use its
geocentric pointing sensors (GAP). To model this

activity, the nominal mode of the AOCS flight
software encapsulates two sub-blocks: one dataflow
block (TEST_ECLIPSE) which detects an eclipse
occurrence and one automaton block
(SUP_OR_GAP) which ensures the change of sub-
mode (SUP or GAP) depending on the outcome of
the eclipse test block.

Figure 6: AOCS nominal sub-mode.

3.5 Modelling synchronous islands of GALS systems

A functional model consists of synchronous islands.
A synchronous island is a synchronous functional
unit in interaction with the middleware. The
middleware supports the execution of code
generated from the Synoptic model: it provides a
synchronous abstraction of the asynchronous real
world. To ensure proper integration of the generated
code with the middleware platform, it is essential to
locate all interactions between the middleware and
the application. Our approach is to locate all these
interactions into a single concept in Synoptic: the
concept of external variables.

External variables allow to represent in Synoptic
models the following domain specific and technical
concepts: telecommand, telemetry, constants
database systems, shared variables and persistent
variables (on reboot). The specification of external
variables is used for code generation and
middleware configuration. Therefore a Synoptic
synchronous island is a block in which all input and
output signals are connected to external variables.
The OBSW block of our case study is one such
synchronous island, Fig. 3 (b).

Contractual approach. An external variable is a
variable managed by the middleware. It can be read
or written by multiple clients (components of the
application). Contracts are used to specify how to
control this access. The configuration of an external
variable is done using four levels of contracts:

 a classical syntactic contract that includes its
name and type ;

 a remote access contract (through telemetry) ;

 Page 7/10

 a persistence contract that specifies if the
variable is persistent on reboot or not ;

 a synchronization contract that describes the
possible concurrent interactions when the
variable is shared.

Each component using such a variable must also
provide a usage contract that defines the protocol it
will use to access the variable. These contracts allow
the middleware to manage these variables. Thus,
the synchronization contract will indicate if locks are
needed and when they should be used. The
persistence contract will indicate how the variable
should be stored (RAM or permanent memory). The
monitoring functions of the variable that the
middleware must implement are defined by the
remote access contract and the usage contracts.

3.6 Control and temporal properties

As described before, blocks are functional units of
compilation and execution. Block execution is
controlled using two specific control ports: trigger
and reset ports. These ports are inherited from the
Simulink/Stateflow approach. These ports appear as
black triangles in the upper left of the block, Fig. 3
and 6.
Trigger port. The trigger port is an event port. The
occurrence of a trigger event starts the execution of
the block and its specification may then operate at its
own pace until the next trigger is signaled. Sub-
blocks have their own trigger control ports and can
thus operate at a different rate. Without event signal
connecting its control port, a sub-block inherits the
control signals of its parent block.
Explicit clock and adaptors. The trigger port
stands for the clock of the block. In our case study,
the trigger control port of blocks is never connected:
the clock of the block is explicitly defined using a
period or a frequency property. Adding this
frequency property is semantically equivalent to
connecting the trigger control port with a 20 Hz
clock.
By convention, all input signals of the block are
synchronized with the trigger of the parent block.
This constraint may be too strict: it is thus possible to
redefine the frequency of ports by adding an explicit
property of frequency. Note however that the clock of
ports must be a down-sampling of the parent trigger.
Explicitly specifying a real-time constraint on ports
and blocks can lead to difficulties when specifying a
flow between two ports with different frequencies.
Synoptic tools are able to detect such clock errors.
The designer should use pre-defined clock adaptors
to resample the signal, Fig. 6.
Besides frequency properties, it is possible to specify
the phase and the Worst Case Execution Time
(WCET) of a block.

Reset port. The reset port is a Boolean data port
whose clock is a down sampling of the trigger signal.
The reset signal forces the block to reset its state
and variables to initial values.

3.7 Properties specification

Synoptic is equipped with an assertion language to
state desired properties of the model under
development. This assertion language makes it
possible to express invariants, pre- and post-
conditions on blocks. Invariants are used to express
coherence of modes. For instance, a typical
assertion that we want to prove on the case study
model is that if the MCS block is in SAFE mode,
then the AOCS block is also in SAFE mode.
Such an assertion is described in Synoptic as
follows:

(OBSW.MCS.state=SAFE) (OBSW.AOCS.state=SAFE)

The Synoptic environment provides a tool to extract
Synoptic models and their associated properties and
pass them to the Altarica model-checker [16]. Pre-
and post-conditions can be either statically or
dynamically tested. In the latter case, monitoring
functions are implemented in the final software and
raise events when properties are not satisfied.
Monitoring functions are distinguished from assertion
properties by raising an event to its environment
when the property is not satisfied:

 assertion : pre : a>10 ;

 monitoring : pre : a>10 raise e! ;

Here, a stand for an input data port and e for an

event port and e! for an event emission on e port.

4. Synoptic components

Synoptic supports modular system development and
parametric components. The latter are particularly
useful for an incremental design and gradual
refinement, using predefined development patterns.
As mentioned in 3.2, there are two main categories
of components: dataflow blocks and automata
blocks. They exist on the type level (interfaces) and
on the element level (instances). Components can
be parametric, in the sense that a block can take
other elements as arguments. Parametric
components are similar to functors in ML-style
programming languages, but parameters are not
limited to be blocks. They can, among others,

 be integers, thus allowing for variable-sized
arrays whose length is only fixed during compile
time

 be types, thus allowing for type genericity as in
Java 5 [17].

 Page 8/10

 be entire components, thus allowing for
component assembly from more elementary
blocks.

Syntactically, the parameters of a block are specified
after a requires clause, the publicly visible elements
made available by the block follow in a provides
clause, and there may be a private part, as shown in
Fig.7.

1 component C

2 requires

3 block type ADD

4 features

5 idp1 : in data port integer ;

6 idp2 : in data port integer ;

7 odp1 : out data port integer ;

8 end ADD;

9 provides

10 dataflow ADD_MULT.op

11 blocks

12 add : block type ADD;

13 mult : block type MULT;

14 flows

15 s1 : data idp1 ! add.idp1;

16 -- other flows ...

17 end ADD_MULT.op;

18 private

19 block type MULT

20 features

21 -- ...

22 end MULT;

23 end C;

Figure 7: A parameterized component.

This example reveals parts of the textual syntax of
Synoptic, which in this case is more perspicuous

than a graphical syntax. The component C requires

(an instance of) a block, called ADD, that is

characterized by a component type having a certain

number of in and out ports. C provides a dataflow

that is composed of two blocks, one of which is

defined in the private part of C.

Parameterized blocks can be instantiated with
elements that meet their typing constraints, in a large
sense. In the case of simple parameter types (like
integers), the typing constrains are evident. When
instantiating a parameterized component having a

parameter type P with a component C, the

component C has to provide all the elements

stipulated by the requires clause of P (but may

provide more). Conversely, C may require some (but

not necessarily all) the elements provided by P.

Parameter instantiation is thus essentially
contravariant. Some clauses of a component are not
checked during instantiation, such as private.

Parameter types can be equipped with properties
such as temporal properties. Instantiating these
types gives rise to proof obligations, depending on

the underlying logic. In some cases, an exact match
between the formal parameter component and the
actual argument component is not required. In this
case, a mechanism comparable to a type cast
comes into play: Take, for example, the case of a
component C20| triggered at 20Hz (as in Fig.6) that is
to be used by a parametric component C10| operating
at 10Hz. Component C20| can be used as argument
of C10|, and a default frequency splitter will be
synthesized that adapts the frequency of the C20| to
C10|.

5. Incremental design and refinement features

The Synoptic environment promotes a top-down
approach including incremental design and
refinement features. In first steps of design, Synoptic
allows to describe an abstract model.
For instance, the designer can describe abstract
interfaces where data ports are not typed and
connect instances of these interfaces in a dataflow
diagram.
In a second step, the designer can refine its
modelling by typing the block interfaces. The block
interface can be then implemented with dataflow or
automaton blocks. These features of the Synoptic
environment are mainly ‘edition refinement’ which
allows the designer to model a system in an
incremental way. In doing so, the designer loses the
link between the different levels of refinement: when
the model is concretized, the initial abstract model is
not preserved and therefore cannot be accessed.

Figure 8: AOCS nominal sub-mode.

Synoptic offers a way to specify refinement and to
keep a formal link between an abstract model and its
concretization. As depicted in the metamodel,
Synoptic provides two types of refinements: flow
refinement and block refinement, Fig.8.
A flow refinement consists of refining a flow with a
dataflow block. To be properly defined, the flow must
be declared as abstract and the dataflow block must
have a single input port and a single output port
correctly typed.
A block refinement consists of refining a block
instance with a dataflow block. The main use of this
type of refinement is to concretize an interface block
with a dataflow.

 Page 9/10

Example. Fig. 9 illustrates a flow refinement. The
first model is an abstract view of the global
architecture of the case study.

Figure 9: Flow refinement.

The abstract model consists of three dataflow
blocks. Sensors send their data (position and
attitude) to the central flight software. OBSW
computes them and sends a new command to
actuators. In this abstract block diagram, flows
between actuators and the OBSW are obviously not
synchronous signals: data are exchanged through
an 1553 bus.
To consider this fact, flows are specified as abstract.
The same applies to the flows between OBSW and
actuators. Moreover, a real-time requirement is

added to the flows: <<delay ≤ 20 µs >>.

This requirement represents the maximum age of
data: data consumed by OBSW must be aged less
than 20µs. The second model shows how this
abstract model is refined. Each flow is refined with a
dataflow block composed of external variables. The
concrete model confirms that data sent by the
sensors are not synchronous flows but pass through
the middleware. According to the real-time
requirement of abstract model, the middleware is in
charge of distributing data to flight software by
respecting the limit of data aging. In addition, this
refinement step displays the OBSW synchronous
island.

6. Conclusion

The Synoptic language is equipped with tools based
on the Eclipse EMF modeling framework. The
purpose of the SPaCIFY project is not to develop a
fully-integrated design environment but rather to
equip the proposed design process with prototype
tools in order to prove the feasibility of the approach.
The development of the Eclipse-based modeling
workbench started with the definition of the Ecore
meta-model of the Synoptic language. The definition
of this meta-model has relied on the experience

gained during the GeneAuto project. This definition
is the result of a collaborative and iterative process.
A concrete syntax relying on the meta-model has
been defined using academic tools such as TCS
(Textual Concrete Syntax). This textual syntax was
used to validate the usability of the language through
a pilot case study described in this paper. These
models have helped to improve the Synoptic
language and to adapt it to industrial know-how.
Once the language was stabilized, a graphical user
editor was designed. A set of structural and typing
constraints have been formalized, encoded in OCL
(Object Constraint Language), and integrated into
the environment.
Along these activities, a formal semantics of the
language was defined. The semantics of the
functional part of the Synoptic language has been
encoded in a typed sets theory using the B Method.
This formalization has been performed in an
incremental way. First, the Semantic Domain (SD)
has been formalized. Our SD relies on the Model of
Sequences [22]. Then, we formalized an abstract
syntax of the Synoptic language. Finally, we have
defined a semantics function associating to each
node constructor of our abstract syntax a term
expressed in the Sequences Model.
This formalization of the Synoptic semantics will be
helpful to validate the existing transformation of
Synoptic models to SME models. Another benefit of
this semantics will be to establish links between
Synoptic and other synchronous languages which
semantics is expressed through the Tag Model [23].
We now plan to exploit this formalization framework
in order to study the formalization of domain specific
transformations from Synoptic to more and more
concrete Synoptic models close to an actual
implementation, e.g., taking into account scheduling
and mapping aspects. We will rely mainly on the
concept of refinement.

Case studies. The Synoptic environment is being
used to develop case studies of industrial size.
Astrium intends to experiment the SPaCIFY
technologies and tool chain. This case study targets
on the one hand the evaluation of the Synoptic
modeling language for early system engineering
phases, and on the other hand the evaluation of the
Altarica-based model-checker, especially with
respect to its scalability. Thales Alenia Space
conducts another case study which aims to model a
complete flight software. This case study focuses on
the use of external variables in the SPaCIFY design
process, and on the use of the Polychrony platform
for code generation purposes.

Future investigations. The Synoptic environment is
based on model transformation. Thus, verifying this
transformations is a key point. It has been addressed
in the Geneauto project to certify sequential code

 Page 10/10

generation from a Stateflow/Simulink based
language. This work must be extended to take into
account features of the execution platform such as
timers, preemption-based schedulers, multi-
threading, multi-processors,… Work is in progress
on the functional subset of the Synoptic language.

The Synoptic environment provides a toolset
supporting a development process. Experience
acquired during the SPaCIFY project with industrial
partners has shed light two different processes and
thus the need to parameterize the platform by the
process. A SPEM-based specification of the
development process could be used as input of a
generic platform so that it could be configured to
match end user current and future development
methods. The Synoptic environment offers a limited
support to refinement-based development process.
This support could be extended and coupled with
versioning to allow refinement checking between any
couples of models or sub-models. It means a
support for defining and partially automatically
generating gluing invariants between models. Then
proof obligations could be generated.

7. References

[1] Simulink: "Simulation and Model-Based Design”.

http://www.mathworks.com/.

[2] Andres Toom, Tonu Naks, Marc Pantel, Marcel
Gandriau, and Indra Wati: "GeneAuto: An
Automatic Code Generator for a safe subset of
SimuLink/StateFlow", In European Congress on
Embedded Real-Time Software (ERTS’08),
Toulouse, 2008

[3] F.-X. Dormoy: "Scade 6: a model based solution
for safety critical software development", In
Proceedings of the 4th European Congress on
Embedded Real Time Software (ERTS ’08),
Toulouse, 2008.

[4] RT-Builder : solutions for Real-Time design,
modeling and analysis of complex,
multiprocessors and multi-bus systems and
software.http://www.geensys.com/?Outils/RTBuild
er.

[5] Peter J. Robinson: " Hierarchical object-oriented
design",. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1992.

[6] Object Management Group: "CORBA Component
Model 4.0 Specification". Specification Version
4.0, April 2006.

[7] Jean-François Rolland, Jean-Paul Bodeveix,
Mamoun Filali, David Chemouil, and Thomas
Dave: "AADL modes for space software", In Data
Systems In Aerospace (DASIA), ESA
Puhblications, 2008.

[8] As-2 Embedded Computing Systems Committee
SAE: "Architecture Analysis & Design Language
(AADL)", SAE Standards no AS5506, November
2004.

[9] Sanford Friedenthal, Alan Moore, and Rick
Steiner: "A Practical Guide to SysML: The
Systems Modeling Language", Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2008.

[10] Object Management Group: "A UML Profile for
MARTE, Beta 2", Technical report, June 2008.

[11] ASSERT Project: Automated proof-based System
and Software Engineering for Real-Time
Systems, http://www.assert-project.net/, 2007.

[12] N. Halbwachs, P. Caspi, P. Raymond, and D.
Pilaud: "The synchronous dataflow programming
language LUSTRE". In Proceedings of the IEEE,

pages 1305–1320, 1991.

[13] Paul Le Guernic, Jean-Pierre Talpin, Jean-
Christophe Le Lann, and Projet Espresso:
"Polychrony for System Design", Journal for

Circuits, Systems and Computers. Special Issue
on Application Specific Hardware Design.,
12:261–304, August 2003.

[14] Alan Burns, Brian Dobbing, and Tullio Vardanega:
"Guide for the use of the Ada Ravenscar Profile in
high integrity systems". Ada Lett., XXIV(2):1–74,
2004.

 [15] David Harel: "Statecharts: A visual formalism for
complex systems", Sci. Comput. Program.,
8(3):231–274, 1987.

[16] Altarica Project. http://altarica.labri.u-
bordeaux.fr/wiki/.

[17] James Gosling, Bill Joy, Guy Steele, and Gilad
Bracha: "Java(TM) Language Specification", 3rd
Edition. Addison-Wesley Professional, 2005.

[18] ESA, European Cooperation for Space
Standardization: "ECSS-E-70-41 - Telemetry &
Telecommand - Packet Utilisation" , 2003.

[19] SPaCIFY Project: Model-Driven Engineering and
Formal Methods for Critical Embedded Software.
http://spacify.gforge.enseeiht.fr/

[20] A. Cortier, L. Besnard, J.P. Bodeveix, J. Buisson,
F. Dagnat,, G. Garcia, J. Ouy, M. Pantel, A.
Rugina, M. Streker, J.P Talpin: "Chapter :
Synoptic - a domain-specific modeling language
for space on-board application software.”, in
Book Synthesis of embedded software -
frameworks and methodologies for correctness by
construction software Design, Edition Springer,
2010 (to appear).

[21] J-P. Talpin, J. Ouy, T. Gauthier, A. Cortier:
"Modular interpretation of heterogeneous
modeling diagrams into synchronous equations
using static single assignment", in proceedings of
the 10th International Conference on Application
of Concurrency to System Design (AOCS’10),
2010.

[22] L. Besnard, T. Gautier, P. Le Guernic: "SIGNAL-
V4: INRIA Version : Reference Manual",
Research Report, 2008

[23] E. A. Lee and A. L. Sangiovanni-Vincentelli:
"Comparing models of computation", In
International Conference on Computer Aided
Design (ICCAD'96), San Jose, USA, 1996.

http://www.mathworks.com/
http://spacify.gforge.enseeiht.fr/

