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Abstract: The ANR exploratory project SPaCIFY 
[19,20] designs and implements a domain-specific 
environment, for real-time embedded space 
application and control software. Synoptic is an 
Eclipse-based modeling environment which aims to 
support all aspects of aerospace software design. In 
this context, a Domain Specific Modeling Language 
(DSML) called Synoptic has been defined in 
collaboration with the industrial end users of the 
project. Relying on the standard modeling languages 
used in the domain such as Simulink/Stateflow and 
AADL, Synoptic DSML covers the design of 
application and control modules using synchronous 
programs, dataflow diagrams, mode automata, and 
also the partitioning, timing and mapping of these 
module onto satellite architectures. This paper 
describes the main features of Synoptic DSML. A 
case study illustrates the concepts introduced in this 
paper. 
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1. Introduction 

A satellite is an unmanned spacecraft. The system 
architecture is usually specialized according to the 
satellite mission. There are two main subsystems:  
the payload is an application equipment such as 
specific scientific instrumentation for instance; the 
platform consists of mechanical structure, sensors 
and actuators used by the payload and devices for 
communication with ground stations. The ANR 
SPaCIFY exploratory project focuses on the flight 
software embedded in the satellite to manage its 
platform, also called on-board software. The flight 
software is a real-time software that provides 
services that are common to whatever mission-
specific payload the spacecraft is assigned. Typical 
services include reaching and following the desired 
attitude and orbit, managing thermal regulation 
systems, power sources, monitoring system status, 
managing on-board network (MIL-STD-1553, OBDH, 
SpaceWire), and communicating with ground 
stations.  
Even after the satellite has been launched, flight 
software must be adapted. Satellites are subject to 
high energy particles that may damage hardware 

components. Such damages cannot be fixed except 
by installing software workarounds. Bug fixes and 
software updates should be propagated to flying 
satellites. In addition, mission extensions may 
require functional enhancements. 
As flight software is critical to the success of the 
mission, space industries and agencies have worked 
on engineering processes in order to help increase 
reliability. For instance, the European Space Agency 
has published standards (ECSS-E-40) on software 
engineering and (ECSS-Q-ST-80) on product 
assurance. These standards do not prescribe a 
specific process. They rather formalize documents, 
list requirements of the process and assign 
responsibilities to involved partners. Regarding 
updates, standards stipulate for instance that the 
type, scope and criticality must be documented; that 
updates must be validated; and so on. Industries are 
free to come up with their own conforming 
processes. The SPaCIFY project aims to define such 
a process and supporting tools based on Model-
Driven Engineering (MDE), synchronous languages 
and the Globally Asynchronous Locally Synchronous 
System (GALS) paradigm. 

2. Models used 

Two main kinds of models are commonly used in 
order to design the platform software: on the one 
hand, the description of the platform itself, its 
hardware and software architecture, CPU, memory, 
storage, communication buses, sensors, actuators, 
hardware communication facilities, operating system, 
tasks, software communication facilities, and on the 
other hand, the command and control algorithms 
involved in the management of the platform. All 
these models have common features. First, the 
notion of mode is central to represent the various 
states or configurations of both hardware and 
software (for example: init, reset, on, low power, 
failure, safe). The modes and their management are 
usually expressed using finite automata. Second, the 
functional blocks, data exchange buses and signals 
are used to represent both the hardware and 
software architectures, and the command and 
control software. 
However, the current models only provide a partial 
account of the constraints that the final system must 
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satisfy. The designers usually encode these hidden 
constraints using the available constructs in the 
modeling languages, even if this was not the initial 
purpose of the construct used. This is usually the 
case for hard real-time constraints. The designers 
will rely on explicit management of the control-flow in 
dataflow models in order to manage the concurrency 
between the activities. But, the real timing 
constraints are not explicitly given in the model, they 
are handled by the designers who sequence the 
activities, but there is no real specification of the 
intended result. Thus it requires a very difficult 
verification phase that can only occur on the final 
target. This is the current main difficulty: using model 
constructs for other purposes than their intended 
ones without any formal, model-level traceability to 
the initial constraints.  
 
Currently, industrial main actors are relying on the 
Matlab toolboxes, Simulink and Stateflow from the 
MathWorks [1] for expressing the command and 
control algorithms for the various sub-systems of the 
platform. These models are built by command and 
control engineers taking into account several kinds 
of constraints: 

 the hardware which is usually known very early 
(in particular if it handles timing and 
synchronization constraints related to sensors 
and actuators, which must be activated and will 
produce results in very precise timing patterns); 

 the system mode management that impacts the 
execution of the various sub-systems; 

 the specification of the intended sub-system. 
 
The Simulink and Stateflow toolboxes allow a very 
wide range of modeling methods, from continuous 
partial differential equations to graphical functional 
specifications. Each industrial actor has a well 
defined process which defines the restricted subset 
of the modeling language that will be used at each 
phase of the development cycle. In the ITEA 
GeneAuto project [2], a subset of these toolboxes 
was defined that fits the needs for the modeling of 
space applications from early design to automated 
target code generation.  
The industrial partners of SPaCIFY took also part in 
GeneAuto. This subset aimed at providing a solid 
semantic background that would ease the 
understanding and the formal verification of models. 
This subset was chosen as an entry point for the 
design of the Synoptic language. One key point is 
the use of control-flow signals and events (called in 
Simulink function call events) in order to manage 
explicitly the sequencing of the blocks in dataflow 
models. This is an important point which is 
significantly different on the semantics side from the 
classical dataflow modeling languages such as 
SCADE [3] or RT-Builder [4] which do not provide a 
specific modeling construct for this purpose, but 

allow to encode it through empty data signals that 
are added between each block in the intended 
sequencing path. The key point is that the intended 
hard real-time constraints are not explicit.  
Thus it is mandatory to handle the control-flow 
construct exactly in its usual semantics not using an 
approximate encoding which only works most of the 
time but is not proven to work in all cases. Several 
studies have been conducted by industrial main 
actors regarding the modeling of hardware and 
software architecture. HOOD [5] and CCM [6] have 
been used for many real projects; AADL [7, 8], 
SysML [9] and UML/MARTE [10] have been 
evaluated using already existing projects that could 
be modeled and the results compared with the real 
systems. Once again, these languages provide a 
very wide range of modeling constructs that must be 
reduced or organized in order to be manageable. In 
the European ASSERT project [11], two tracks were 
experimented related to these languages, one 
mainly synchronous based on the LUSTRE [12] and 
SIGNAL [13] languages, the other mainly 
asynchronous based on the RAVENSCAR Ada [14] 
profile. The industrial partners from SPaCIFY were 
also part of ASSERT. Thus, the results of these 
experiments were also used as entry points for the 
design of the Synoptic language.  
In the current software development process, 
command and control models are formal 
specifications for the software development. These 
specifications have been validated by command and 
control engineers by using model simulators. The 
hardware architecture is currently defined in a semi-
formal manner through structured documents. In the 
near future, models in AADL, or in a subset of 
SysML/UML/MARTE similar to AADL, will be used to 
give a formal specification of the architecture. 
Then, software engineers either develop the 
software and verify its conformance to the 
specification, or use automated code generators; the 
software is then split in parts that are mapped to 
threads from the RTOS. They are then scheduled 
according to the real-time constraints. The know-how 
of engineers lies in finding the best splitting, mapping 
and scheduling in order to minimize the resources 
used. One of the purposes of introducing Model 
Driven Engineering is to be able to automate partly 
these manual transformations and the verification 
that their result satisfies the specification. The 
Synoptic language should thus allow importing 
command and controlling models expressed in 
Simulink/Stateflow, and hardware architecture 
models expressed in AADL. The associated toolset 
should assist in the reorganization of the model, and 
allow to express the mapping and scheduling. 

3. Synoptic : DSML for aerospace systems 

3.1 GALS systems 
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Figure 1: GALS systems. 

The satellite management software is usually divided 
in parts that are quite autonomous one from the 
other, even if they share the same platform and 
resources. Inside each of these parts, the subparts 
are most of the time strongly linked and must 
cooperate in a synchronous manner. These parts 
usually exchange information but with less time 
critical constraints, thus relying on asynchronous 
exchanges. This kind of system is usually called 
Globally Asynchronous, Locally Synchronous 
(GALS).  
 
The SPaCIFY approach involves the design and 
development of such systems using a GALS 
architecture dedicated to space. Fig. 1 shows the 
high level architecture used by the consortium. The 
flight software consists of a set of subsystems, called 
synchronous islands, which encapsulates the main 
functionalities of the system as the Attitude and Orbit 
Control System (AOCS). These blocks can 
communicate with each other, with other equipment 
or with the ground station via the middleware 
services. The middleware is built on a real-time 
kernel that provides basic services such as tasks 
management and synchronization primitives. The 
middleware provides high level services such as a 
PUS interpreter (Packet Utilization Standard) [18] 
responsible for routing telecommands to other 
services. 
 
The main abstraction service provided by the 
middleware is the concept of external variables. 
External variables are used as interfaces between 
the application tasks of the flight software (i.e. 
synchronous islands) and the services of the 
middleware. The external variables are instantiated 
in the source code as memory cells which are 
associated with specific treatments. The treatments 
performed are defined by the configuration of the 
middleware, in particular through contracts specified 
in the design. In such an architecture, the 

middleware provides a synchronous abstraction of 
the real-world to the application tasks of the system. 
He is responsible for ensuring the synchronization of 
read and write access to external variables in order 
to guarantee the determinism of synchronous 
islands. 
 

3.2 Synoptic overview 

Synoptic is a Domain Specific Modeling Language 
(DSML) designed to cover a large part of embedded 
flight-software design. As such, Synoptic consists of 
heterogeneous modeling and programming 
principles defined in collaboration with the industrial 
partners and end users of the SPaCIFY project. 
Used as the central modeling language of the 
SPaCIFY model driven engineering process, 
Synoptic allows describing different layers of 
abstraction: at the highest level, the software 
architecture models the functional decomposition of 
the flight software. This is mapped to a dynamic 
architecture which defines the thread structure of the 
software. It consists of a set of threads, where each 
thread is characterized by properties such as its 
frequency, priority and activation pattern (periodic, 
sporadic).  
 

 

Figure 2: Synoptic Global view. 

 
At the lowest level, the hardware architecture 
permits to define devices (processors, sensors, 
actuators, busses) and their properties. Synoptic 
permits to describe three types of mappings between 
these layers (Fig. 2): 

 mappings which define a correspondence 
between the software and the dynamic 
architecture, by specifying which blocks are 
executed by which threads; 

 mappings which describe the correspondences 
between the dynamic and hardware architecture, 
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by specifying which threads are executed by 
which processor: 

 and mappings which describe a correspondence 
between the software and hardware 
architecture, by specifying which data is 
transported by which bus for instance. 

 
Our aim is to synthesize as much of these mappings 
as possible, for example by appealing to internal or 
external schedulers. However, to allow for human 
intervention, it is possible to give a fine-grained 
mapping, thus overriding or bypassing machine-
generated schedules.  
 
Anyway, consistency of the resulting dynamic 
architecture is verified by the SPaCIFY tool suite, 
based on the properties of the software and dynamic 
model. At each step of the development process, it is 
also useful to model different abstraction levels of 
the system under design inside a same layer 

(functional, dynamic or hardware architecture). 
Synoptic covers this capability by providing an 
incremental design framework and refinement 
features. 
 
To summarize, Synoptic deals with dataflow 
diagrams, mode automata, blocks, components, 
dynamic and hardware architecture, mapping and 
timing. In this section we focus on the functional part 
of the Synoptic language which permits to model 
software architecture. This sub-language is well 
adapted to model synchronous islands and to 
specify interaction points between these islands and 
the middleware platform using the concept of 
external variables. Synchronous islands and 
middleware form a Globally Asynchronous and 
Locally Synchronous (GALS) system. 
 

 

 

 

 

 

Figure 3: Case study : satellite positioning software. 
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Software architecture. The development of the 
Synoptic software architecture language has been 
tightly coordinated with the definition of the 
GeneAuto language [16]. Synoptic uses essentially 
two types of modules, called blocks in Synoptic, 
which can be mutually nested: dataflow diagrams 
and mode automata. Nesting favors a hierarchical 
design and allows to view the description at different 
levels of details. By embedding blocks in the states 
of state machines, one can elegantly model 
operational modes: each state represents a mode, 
and transitions correspond to mode changes. In 
each mode, the system may be composed of other 
sub-blocks or have different connection patterns 
among components. 
 
Apart from structural and behavioral aspects, the 
Synoptic software architecture language allows to 
define temporal properties of blocks. For instance, a 
block can be parameterized with a frequency and a 
worst case execution time which are taken into 
account in the mapping onto the dynamic 
architecture. 
 

3.3 Synchronous formal semantics 

Synoptic has a formal semantics, defined in terms of 
the synchronous language SIGNAL [21]. On the one 
hand, this allows for neat integration of verification 
environments for ascertaining properties of the 
system under development. On the other hand, a 
formal semantics makes it possible to encode the 
meta-model in a proof assistant. In this sense, 
Synoptic will profit from the formal correctness proof 
and subsequent certification of a code generator that 
is under way in the GeneAuto project.  
 
Synoptic is equipped with an assertion language that 
allows to state desired properties of the model under 
development. We are mainly interested in properties 
that permit to express, for example, coherence of the 
modes such as : ‘if component X is in mode m1, then 
component Y is in mode m2 or can eventually move 
into mode m2’.  
Specific transformations extract these properties and 
pass them to the verification tools Altarica [16]. 
 

3.4 Synoptic architecture models 

One typical case study under investigation in the 
project is generic satellite positioning software, Fig. 3 
(a). It is responsible for automatically moving the 
satellite into a correct position before starting 
interaction with the ground. 
 
Block diagrams. A Synoptic model is a graphical 
block-diagram. A Synoptic block-diagram is a 
hierarchy of nested blocks. As such, you can 
navigate through different levels of abstraction and 

see increasing levels of model details. A block is a 
functional unit that communicates with other blocks 
through its interface. 
 
Block Interface. A block interface consists of 
communication ports. A port can be either an event 
port or a data port and is characterized by its 
direction (in or out). Data ports can be typed using 
simple data types. However, typing data ports is 
optional in the early stages of design to give the 
designer the flexibility to describe abstract models. 
As shown in Fig.3, which represents a part of the 
Synoptic meta-model, it is possible to encapsulate a 
set of ports within a single entity called group of 
ports (PortGroup in Fig. 4).  
 

 

Figure 4: Synoptic Meta-model : Interface. 

A group of ports is used to group a set of ports which 
are conceptually linked. As specified by the 
synchronized property of the PortGroupDecl meta-
model class, it is possible to specify a 
synchronization constraint on ports constituting the 
group. A block interface can be implemented by 
different types of blocks: dataflows, automata or 
externals, Fig. 5. 
 

 

Figure 5: Synoptic Meta-model : Model Diagram. 

 
Dataflows. A dataflow block models a dataflow 
diagram. It embodies sub-blocks and specifies data 
or event flows between them. A flow is a directed 
connection between ports of sub-blocks. A sub-block 



 Page 6/10 

is either an instance of dataflow, automaton or 
external block, or an instance of block interface (see 

ModelInstance class in Fig. 4). In the latter case, 

the model is abstract: the designer must implement 
all the block interfaces used to type sub-blocks in 
order to obtain a concrete model. As such, Synoptic 
environment design promotes a top-down approach. 
 
Automata. An automaton block models state 
machines. A Synoptic automaton consists of states 
and transitions. As for dataflow, a state can be 
represented by an instance of dataflow, automaton 
or block interface. Dataflow diagrams and automata 
can be hierarchically nested; this allows for a 
compact modeling of operational modes. 
 
Apart from the ongoing actions of automata (block 
embedded in state), it is possible to specify entry 
and exit actions in an imperative style. Transitions 
between states are guarded and equipped with 
actions. There are two types of transitions in 
Synoptic: strong and weak transitions.  
Strong transitions are used to compute the current 
state of the automaton (before entering the state), 
whereas weak transitions are used to compute the 
state for the next instant. More precisely, the guards 
of weak transitions are evaluated to estimate the 
state for the next instant, and the guards of strong 
transitions whose source is the state estimated at 
the previous instant, are evaluated to determine the 
current state. 
 
Externals. A common practice in software industry 
is the re-use of external source code: designers 
must be able to introduce blocks representing 
existing source code into the model. Moreover, for 
modeling flight software functional units, it is 
necessary to use primitive operations such as 
addition, cosine, division... Synoptic provides the 
concept of external block to model primitive blocks 
and external source code. Primitive blocks are 
encapsulated in a Synoptic library. The Synoptic tool 
suit recognizes these primitive operations during 
code generation. For embedding an external source 
code, the procedure is quite different. The designer 
must build his own external block by defining its 
interface, by giving the source code path which will 
be used at code generation time, and by specifying 
pre/post conditions and the Worst Case Execution 
Time of the functional unit. 
 
Example. Fig.6 shows the graphical decomposition 
of the nominal mode of the Attitude and Orbit Control 
System (AOCS/NM) depicted in (Fig. 3 (c)). The 
header of the block tells us that NM is an instance of 
the NM_dtf dataflow block. In nominal mode, AOCS 
can either use its sun pointing sensors (SUP) to 
define its position or, during eclipse, use its 
geocentric pointing sensors (GAP). To model this 

activity, the nominal mode of the AOCS flight 
software encapsulates two sub-blocks: one dataflow 
block (TEST_ECLIPSE) which detects an eclipse 
occurrence and one automaton block 
(SUP_OR_GAP) which ensures the change of sub-
mode (SUP or GAP) depending on the outcome of 
the eclipse test block. 
 

 

Figure 6: AOCS nominal sub-mode. 

 

3.5 Modelling synchronous islands of GALS systems  

A functional model consists of synchronous islands. 
A synchronous island is a synchronous functional 
unit in interaction with the middleware. The 
middleware supports the execution of code 
generated from the Synoptic model: it provides a 
synchronous abstraction of the asynchronous real 
world. To ensure proper integration of the generated 
code with the middleware platform, it is essential to 
locate all interactions between the middleware and 
the application. Our approach is to locate all these 
interactions into a single concept in Synoptic: the 
concept of external variables.  
 
External variables allow to represent in Synoptic 
models the following domain specific and technical 
concepts: telecommand, telemetry, constants 
database systems, shared variables and persistent 
variables (on reboot). The specification of external 
variables is used for code generation and 
middleware configuration. Therefore a Synoptic 
synchronous island is a block in which all input and 
output signals are connected to external variables. 
The OBSW block of our case study is one such 
synchronous island, Fig. 3 (b). 
 
Contractual approach. An external variable is a 
variable managed by the middleware. It can be read 
or written by multiple clients (components of the 
application). Contracts are used to specify how to 
control this access. The configuration of an external 
variable is done using four levels of contracts: 

 a classical syntactic contract that includes its 
name and type ; 

 a remote access contract (through telemetry) ; 
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 a persistence contract that specifies if the 
variable is persistent on reboot or not ; 

 a synchronization contract that describes the 
possible concurrent interactions when the 
variable is shared. 

Each component using such a variable must also 
provide a usage contract that defines the protocol it 
will use to access the variable. These contracts allow 
the middleware to manage these variables. Thus, 
the synchronization contract will indicate if locks are 
needed and when they should be used. The 
persistence contract will indicate how the variable 
should be stored (RAM or permanent memory). The 
monitoring functions of the variable that the 
middleware must implement are defined by the 
remote access contract and the usage contracts. 
 

3.6 Control and temporal properties 

As described before, blocks are functional units of 
compilation and execution. Block execution is 
controlled using two specific control ports: trigger 
and reset ports. These ports are inherited from the 
Simulink/Stateflow approach. These ports appear as 
black triangles in the upper left of the block, Fig. 3 
and 6.  
Trigger port. The trigger port is an event port. The 
occurrence of a trigger event starts the execution of 
the block and its specification may then operate at its 
own pace until the next trigger is signaled. Sub-
blocks have their own trigger control ports and can 
thus operate at a different rate. Without event signal 
connecting its control port, a sub-block inherits the 
control signals of its parent block.  
Explicit clock and adaptors. The trigger port 
stands for the clock of the block. In our case study, 
the trigger control port of blocks is never connected: 
the clock of the block is explicitly defined using a 
period or a frequency property. Adding this 
frequency property is semantically equivalent to 
connecting the trigger control port with a 20 Hz 
clock. 
By convention, all input signals of the block are 
synchronized with the trigger of the parent block. 
This constraint may be too strict: it is thus possible to 
redefine the frequency of ports by adding an explicit 
property of frequency. Note however that the clock of 
ports must be a down-sampling of the parent trigger. 
Explicitly specifying a real-time constraint on ports 
and blocks can lead to difficulties when specifying a 
flow between two ports with different frequencies. 
Synoptic tools are able to detect such clock errors. 
The designer should use pre-defined clock adaptors 
to resample the signal, Fig. 6. 
Besides frequency properties, it is possible to specify 
the phase and the Worst Case Execution Time 
(WCET) of a block.  
 

Reset port. The reset port is a Boolean data port 
whose clock is a down sampling of the trigger signal. 
The reset signal forces the block to reset its state 
and variables to initial values. 
 

3.7 Properties specification 

Synoptic is equipped with an assertion language to 
state desired properties of the model under 
development. This assertion language makes it 
possible to express invariants, pre- and post-
conditions on blocks. Invariants are used to express 
coherence of modes. For instance, a typical 
assertion that we want to prove on the case study 
model is that if the MCS block  is in SAFE mode, 
then the AOCS block is also in SAFE mode.  
Such an assertion is described in Synoptic as 
follows: 
 

(OBSW.MCS.state=SAFE) (OBSW.AOCS.state=SAFE) 

 
The Synoptic environment provides a tool to extract 
Synoptic models and their associated properties and 
pass them to the Altarica model-checker [16]. Pre- 
and post-conditions can be either statically or 
dynamically tested. In the latter case, monitoring 
functions are implemented in the final software and 
raise events when properties are not satisfied. 
Monitoring functions are distinguished from assertion 
properties by raising an event to its environment 
when the property is not satisfied: 

 assertion :  pre : a>10 ; 

 monitoring :  pre : a>10 raise e! ; 

Here, a stand for an input data port and e for an 

event port and e! for an event emission on e port. 

 

4. Synoptic components  

Synoptic supports modular system development and 
parametric components. The latter are particularly 
useful for an incremental design and gradual 
refinement, using predefined development patterns. 
As mentioned in 3.2, there are two main categories 
of components: dataflow blocks and automata 
blocks. They exist on the type level (interfaces) and 
on the element level (instances). Components can 
be parametric, in the sense that a block can take 
other elements as arguments. Parametric 
components are similar to functors in ML-style 
programming languages, but parameters are not 
limited to be blocks. They can, among others, 

 be integers, thus allowing for variable-sized 
arrays whose length is only fixed during compile 
time 

 be types, thus allowing for type genericity as in 
Java 5 [17]. 
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 be entire components, thus allowing for 
component assembly from more elementary 
blocks. 

 
Syntactically, the parameters of a block are specified 
after a requires clause, the publicly visible elements 
made available by the block follow in a provides 
clause, and there may be a private part, as shown in 
Fig.7. 
 

1   component C 

2    requires 

3       block type ADD 

4       features 

5          idp1 : in data port integer ; 

6          idp2 : in data port integer ; 

7          odp1 : out data port integer ; 

8       end ADD; 

9    provides 

10       dataflow ADD_MULT.op 

11       blocks 

12          add : block type ADD; 

13          mult : block type MULT; 

14       flows 

15          s1 : data idp1 ! add.idp1; 

16          -- other flows ... 

17       end ADD_MULT.op; 

18   private 

19       block type MULT 

20       features 

21       -- ... 

22       end MULT; 

23   end C; 

Figure 7: A parameterized component. 

This example reveals parts of the textual syntax of 
Synoptic, which in this case is more perspicuous 

than a graphical syntax. The component C requires 

(an instance of) a block, called ADD, that is 

characterized by a component type having a certain 

number of in and out ports. C provides a dataflow 

that is composed of two blocks, one of which is 

defined in the private part of C. 

Parameterized blocks can be instantiated with 
elements that meet their typing constraints, in a large 
sense. In the case of simple parameter types (like 
integers), the typing constrains are evident. When 
instantiating a parameterized component having a 

parameter type P with a component C, the 

component C has to provide all the elements 

stipulated by the requires clause of P (but may 

provide more). Conversely, C may require some (but 

not necessarily all) the elements provided by P. 

Parameter instantiation is thus essentially 
contravariant. Some clauses of a component are not 
checked during instantiation, such as private. 
 
Parameter types can be equipped with properties 
such as temporal properties. Instantiating these 
types gives rise to proof obligations, depending on 

the underlying logic. In some cases, an exact match 
between the formal parameter component and the 
actual argument component is not required. In this 
case, a mechanism comparable to a type cast 
comes into play: Take, for example, the case of a 
component C20| triggered at 20Hz (as in Fig.6) that is 
to be used by a parametric component C10| operating 
at 10Hz. Component C20| can be used as argument 
of C10|, and a default frequency splitter will be 
synthesized that adapts the frequency of the C20| to 
C10|. 

5. Incremental design and refinement features  

The Synoptic environment promotes a top-down 
approach including incremental design and 
refinement features. In first steps of design, Synoptic 
allows to describe an abstract model.  
For instance, the designer can describe abstract 
interfaces where data ports are not typed and 
connect instances of these interfaces in a dataflow 
diagram.  
In a second step, the designer can refine its 
modelling by typing the block interfaces. The block 
interface can be then implemented with dataflow or 
automaton blocks. These features of the Synoptic 
environment are mainly ‘edition refinement’ which 
allows the designer to model a system in an 
incremental way. In doing so, the designer loses the 
link between the different levels of refinement: when 
the model is concretized, the initial abstract model is 
not preserved and therefore cannot be accessed. 
 

 

Figure 8: AOCS nominal sub-mode. 

Synoptic offers a way to specify refinement and to 
keep a formal link between an abstract model and its 
concretization. As depicted in the metamodel, 
Synoptic provides two types of refinements: flow 
refinement and block refinement, Fig.8. 
A flow refinement consists of refining a flow with a 
dataflow block. To be properly defined, the flow must 
be declared as abstract and the dataflow block must 
have a single input port and a single output port 
correctly typed. 
A block refinement consists of refining a block 
instance with a dataflow block. The main use of this 
type of refinement is to concretize an interface block 
with a dataflow. 
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Example. Fig. 9 illustrates a flow refinement. The 
first model is an abstract view of the global 
architecture of the case study. 
 

 

Figure 9: Flow refinement. 

The abstract model consists of three dataflow 
blocks. Sensors send their data (position and 
attitude) to the central flight software. OBSW 
computes them and sends a new command to 
actuators. In this abstract block diagram, flows 
between actuators and the OBSW are obviously not 
synchronous signals: data are exchanged through 
an  1553 bus. 
To consider this fact, flows are specified as abstract. 
The same applies to the flows between OBSW and 
actuators. Moreover, a real-time requirement is 

added to the flows: <<delay ≤ 20 µs >>.  

This requirement represents the maximum age of 
data: data consumed by OBSW must be aged less 
than 20µs. The second model shows how this 
abstract model is refined. Each flow is refined with a 
dataflow block composed of external variables. The 
concrete model confirms that data sent by the 
sensors are not synchronous flows but pass through 
the middleware. According to the real-time 
requirement of abstract model, the middleware is in 
charge of distributing data to flight software by 
respecting the limit of data aging. In addition, this 
refinement step displays the OBSW synchronous 
island. 

6. Conclusion 

The Synoptic language is equipped with tools based 
on the Eclipse EMF modeling framework. The 
purpose of the SPaCIFY project is not to develop a 
fully-integrated design environment but rather to 
equip the proposed design process with prototype 
tools in order to prove the feasibility of the approach. 
The development of the Eclipse-based modeling 
workbench started with the definition of the Ecore 
meta-model of the Synoptic language. The definition 
of this meta-model has relied on the experience 

gained during the GeneAuto project. This definition 
is the result of a collaborative and iterative process. 
A concrete syntax relying on the meta-model has 
been defined using academic tools such as TCS 
(Textual Concrete Syntax). This textual syntax was 
used to validate the usability of the language through 
a pilot case study described in this paper. These 
models have helped to improve the Synoptic 
language and to adapt it to industrial know-how. 
Once the language was stabilized, a graphical user 
editor was designed. A set of structural and typing 
constraints have been formalized, encoded in OCL 
(Object Constraint Language), and integrated into 
the environment. 
Along these activities, a formal semantics of the 
language was defined. The semantics of the 
functional part of the Synoptic language has been 
encoded in a typed sets theory  using the B Method.  
This formalization has been performed in an 
incremental way. First, the Semantic Domain (SD) 
has been formalized. Our SD relies on the Model of 
Sequences [22]. Then, we formalized an abstract 
syntax of the Synoptic language. Finally, we have 
defined a semantics function associating to each 
node constructor of our abstract syntax a term 
expressed in the Sequences Model. 
This formalization of the Synoptic semantics will be 
helpful to validate the existing transformation of 
Synoptic models to SME models. Another benefit of 
this semantics will be to establish links between 
Synoptic and other synchronous languages which 
semantics is expressed through the Tag Model [23]. 
We now plan to exploit this formalization framework 
in order to study the formalization of domain specific 
transformations from Synoptic to more and more 
concrete Synoptic models close to an actual 
implementation, e.g., taking into account scheduling 
and mapping aspects. We will rely mainly on the 
concept of refinement. 
 
Case studies. The Synoptic environment is being 
used to develop case studies of industrial size. 
Astrium intends to experiment the SPaCIFY 
technologies and tool chain. This case study targets 
on the one hand the evaluation of the Synoptic 
modeling language for early system engineering 
phases, and on the other hand the evaluation of the 
Altarica-based model-checker, especially with 
respect to its scalability. Thales Alenia Space 
conducts another case study which aims to model a 
complete flight software. This case study focuses on 
the use of external variables in the SPaCIFY design 
process, and on the use of the Polychrony platform 
for code generation purposes. 
 
Future investigations. The Synoptic environment is 
based on model transformation. Thus, verifying this 
transformations is a key point. It has been addressed 
in the Geneauto project to certify sequential code 
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generation from a Stateflow/Simulink based 
language. This work must be extended to take into 
account features of the execution platform such as 
timers, preemption-based schedulers, multi-
threading, multi-processors,… Work is in progress 
on the functional subset of the Synoptic language.  
 
The Synoptic environment provides a toolset 
supporting a development process. Experience 
acquired during the SPaCIFY project with industrial 
partners has shed light two different processes and 
thus the need to parameterize the platform by the 
process. A SPEM-based specification of the 
development process could be used as input of a 
generic platform so that it could be configured to 
match end user current and future development 
methods. The Synoptic environment offers a limited 
support to refinement-based development process. 
This support could be extended and coupled with 
versioning to allow refinement checking between any 
couples of models or sub-models. It means a 
support for defining and partially automatically 
generating gluing invariants between models. Then 
proof obligations could be generated. 
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